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1. INTRODUCTION

Mineral identification and mapping of alluvial material using thermal infrared

(TIR) remote sensing is extremely useful for tracking sediment transport, assessing the
degree of weathering and locating sediment sources. As a result of the linear relation

between a mineral's percentage in a given area (image pixel) and the depth of its
diagnostic spectral features, TIR spectra can be deconvolved in order to ascertain

mineralogic percentages (Ramsey and Christensen, 1992; Gillespie, et al., 1990).

Typical complications such as vegetation, particle size and thermal shadowing (Ramsey

and Christensen, 1993) are minimized upon examination of dunes. Actively saltating
dunes contain litde to no vegetation, are very well sorted and lack the thermal shadows

that arise from rocky terrain. The primary focus of this work was to use the Kelso

Dunes as a test location for an accuracy analysis of temperature/emissivity separation

and linear unmixing algorithms. Accurate determination of ground temperature and
component discrimination will become key products of future ASTER data.

A decorrelation stretch of the TIMS image showed clear color variations

within the active dunes. Samples collected from these color units were analyzed for

mineralogy, grain size, and separated into endmembers. This analysis not only reveled

that the dunes contained significant mineralogic variation (Fig. 1), but were more

immature (low quartz percentage) then previously reported (Sharp, 1966; Yeend, et al.,

1984). Unmixing of the TIMS data using the primary mineral endmembers produced

unique variations within the dunes and may indicate near, rather than far, source locales
for the dunes.

The Kelso Dunes lie in the eastern Mojave Desert, California approximately
95 km west of the Colorado River. The primary dune field is contained within a

topographic basin bounded by the Providence, Granite, Bristol and Kelso Mountains to

the east, south, west and north, respectively. The dune field rests upon the alluvial fans

which extend from the Providence and Granite Mountains, with the active region marked

by three northeast trending linear ridges. Although active, the dunes appear to lie at an
opposing regional wind boundary which produces little net movement of the crests

(Sharp, 1966). Previous studies have estimated the dunes range from 70% (Sharp, 1966)
to 90% (Paisley, et al., 1991) quartz mainly derived from a source 40 km to the west.

The dune field is assumed to have formed in a much more arid climate than present, with

the age of the deposit estimated at greater than 100,1300 years (Yeend, et al., 1984).
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Figure 1. Mineral percentages derived from point-counts of thirteen sand samples.

Sample numbers represent the collection site with a 'c' or 's' extension indicating a dune

crest or swale. Samples Klc through K6s were collected from the same color unit and

analyzed to verify the accuracy of the point-counting technique (note the similarity of the

percentages). Samples K13c through K42c were collected along a 9.5 km N-S traverse

through the most active region of the dune field (note the variation when compared to

the first six samples). Also significant is the low average quartz percentage (40.4%).

2. SAMPLE ANALYSES

Forty-eight bulk samples were collected along a 9.5 km N-S traverse. These

samples represented different image color units as well as position on the dune (crest vs.

swale). Thirteen of the forty-eight bulk samples were chosen for detailed analyses to

determine modal abundances. Six of these were from a small, mineralogicaily similar
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Figure 2. Laboratory emission spectra of the four endmembers - quartz, plagioclase,

K-feldspar and magnetite (Avg. grain diameter = 500 - 710 lain). Minerals were

separated from bulk samples using magnetic and heavy liquid separation techniques.
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region and acted as a check on the consistency of the laboratory analysis. The bulk sand

was split into 20 g samples (Cadle, 1955) from which thin sections and laboratory

emission spectra were obtained (Christensen and Harrison, 1992). Over 200 gains per

sample were counted to determine mineralogy and particle diameters (Jones, 1987).

Samples K13c - K42c show clear mineralogic variations throughout the dune field
(Fig. 1). These variations appear real based upon: (1) the color variations in the TIMS

image; (2) the differences in the laboratory emission spectra; and (3) the similar point

count results from samples Klc - K6s. Certain samples, collected from low-lying areas,
contained appreciable amounts of clay. The clay component, separated from the sand

using a Na-pyrophosphate dispersent, was analyzed by X-ray diffraction and found to be

primarily montmorillonite. Finally, approximately 4 g of the dominant mineralogic
components were separated using heavy liquid (Na polytungstate) and magnetic
separation. While tedious, this separation insured the use of the correct endmembers for

the dunes. Because the spectrum of plagioclase, for example, can vary dramatically as a

function of An number, separation is preferred over the use of library spectra. The

spectra of these endmember minerals (Fig. 2) were used as inputs into the unmixing
algorithm for both the lab and image spectra.
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Figure 3. Comparison of endmember percentages derived from point counts (first bar)

and the unmixing model (second bar). The three samples show the best, average and
worst case error.

° KELSO DUNES IMAGE ANALYSIS

Thermal Infrared Multispectral Scanner (TIMS) data for the Kelso region of the
Mojave Desert were acquired in September 7, 1984. Ground resolution at nadir was

approximately 17 m/pixel. The original flight line extends north from the dunes to the

southernmost Cima basalt flows (Barbera, 1989). The data were calibrated and

geometrically corrected for the scan angle of the instrument. Atmospheric path radiance
was removed using LOWTRAN7 with the standard midlatitude summer model. The

calibrated radiance images were then converted to six emissivity and one brightness

temperature image (Realmuto, 1990) using a maximum assumed emissivity of 0.973

(derived from the average of all laboratory spectra). The spectra of the mineralogic

endmembers convolved with the TIMS filter functions resulted in 6-point spectra that

were used as inputs into the unmixing model. Mineral percentage images show very

high concentrations of feldspar within the dunes as well as on alluvial surfaces extending

from the immediate mountain ranges. This relation, coupled with the lack of feldspar
being introduced from the previously assumed western source, indicates this mineral is
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locally derived. By similar reasoning, the magnetite and other mafic minerals seem to

be the direct result of weathering of amphibole rich metasediments in the Granite

Mountains. While a certain percentage of the quartz within the dunes is likely derived

locally, it appears, based on a higher concentration to the northwest, that some amount

may come from the western source some 40 km away.

4. RESULTS

This study represents a rigorous attempt to quantify and validate the linear

mixing assumption of thermal emission spectra for a real geologic surface. It also is

one of the more detailed laboratory studies of the Kelso sand mineralogy. The sum of

both provided an excellent validation of mineralogic retrieval algorithms to remotely

acquired data. Model-derived endmembers percentages agree to within an average of 5.4%

of the point count figures. The error range varied from 1.75% (K17c) to 10.75% (K42c)

(Fig. 3). The general agreement between the petrographic and spectral analyses is

dramatic considering the tims difference between image and sample collection, as well as

the scale difference between image and lab samples. Applied to the TIMS data, the

linear model reveals a much less mature dune mineralogy with a more local source for

the sand than previously reported. Results of this study further the work of Ramsey and

Christensen (1993) and indicate both the validity and power of the linear model

especially when applied to thermal infrared image analysis.
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The abundance of gravel deposits is as well known in certain areas across the
Gulf of Mexico coastal plain, including lands within several National Forests.
These Pleistocene gravels were deposited following periods of glacial buildup
when ocean levels were clown and the main river channels had cut deep Qorges,
leaving the subsidiary streams with increased gradients to reach the ma=n
channels. During the warm interglacial periods that followed each glaciation,
melting ice brought heavy rainfall and torrents of runoff carrying huge sediment
loads that separated into gravel banks below these steeper reaches where
abraiding streams developed. As the oceans rose again, filling in the main
channels, these abraiding areas were gradually flattened and covered over by
progressively finer material. Older terraces were uplifted by tectonic movements
associated with the Gulf Coastal Plain, and the subsequent erosional processes
gradually brought the gravels closer to the surface.

The study area is located on the Kisatchie National Forest, in central Louisiana,
near Alexandria. Details of the full study have been discussed elsewhere(Scholen
et al., 1991). The nearest source of chert is in the Ouachita Mountains located
to the northeast. The Ouachita River flows south, out of these mountains, and
in Pleistocene times probably carried these chert gravels into the vicinity of the

esent day Little River Basin which lies along the eastern boundary of the
tional Forest.

Current day drainages cross the National Forest from west to east, emptying
into the Little River on the east side. However, a north-south oriented ridge of
hills along the west side of the Forest appears to be a recent uplift associated
with the hinge line of the Mississippi River depositional basin further to the
east, and 800,000 years ago, when these gravels were first deposited during
the Williana interglacial period, the streams probably flowed east to west, from
the Little River basin to the Red River basin on the west side of the Forest.

Within the National Forest land north of Alexandria, along Fish Creek, and east
and wast of an area known as Breezy Hill, exist several small, worked out gravel
pits on privately owned blocks of land, formerly used by the state and county
road departments. The pattern presented by these pits give the impression of
a series of north-south drainages lacing through the Forest, probable tributaries
to Fish Creek which flows south of east from the west side of the Forest to
empty into the Little River. Because of this predominant north-south pattern, no
consideration was given to areas between these drainages during early gravel
exploration efforts.

2. IMAGE ACQUISITION

The initial imagery, obtained for the U.S. Forest Service during the predawn
hours of early October in 1983 by the NASA, Stennis Space Center, Earth
Resources laboratory, was acquired with the Thermal Infrared Muitispectral

]3



Scanner(TIMS)fromtheLear23atanaltitudeof 12,000metersaboveterrain,
and provided data with 30 meter pixels and a swath width of approximately
18.7 kilometers. This time had been a particularly hot and dry period, and provided
bone dry ground conditions as well as maximum outflow of heat from the earth's
surface into the cool night sky. These conditions are ideal for obtaining good
imagery for gravel search.

The 6 bands of data obtained from the TIMS operation are in digital format.
This format provides a relative measure of the emissivity from the ground surface
soil minerals at each of the 6 wave lengths within the mid-infrared range, and
makes it possible to plot a spectral signature for each pixel.

3. SPECTRAL PROPERTIES

The materials properties that provide.diff_ences .bet_'e=ensP,e_tra!s_gnateure-rSrav
of gravel deposits and deposss ot other, Tinergralneo ma[u[P,l_ _,=u¢Hu =H _y
absorption of the quartz molecule in TIMS band 3, the fraction of silt and clay
in the material, and the thermal inertia of the material.

The energy absorption is caused by the stretching of the mol..ecu_r bonds . ,^
between t_e oxygen and silicon atoms that occurs in making up me _lU;- mu_uuulu
and its linkages. In order to maintain this configuration, the molecule must
absorb energy from o_side _self in the.wave len_h,s aSTS_0clare.d withth.e^,TlaMnS
band 3. This provides the stnKmg signature .a._soc.saTeo w_n .q.u_,,,. _.==v,,,L__
clean, dry, coarse grains provioe the _rong.e_. s,gn_uras. _llt,_|mscPUt_'nn_'u"'
clay minerals or other rocK minerals, all teno to proouce pno[on suau y
which dilutes the signature.

The coarse nature of sand deposited with gravel deposits is a result of the
velocity of flow in the channel. Finer particles resist settlement until still water is
reached, preventing the fine and coarse materials from intermingling. Coarse
sand and gravel settle out in moving, water. This separation is .assi_edby ..lateral
movements in the river channel. A nver carrying a coarse grain.eo ioao wm
develop a straight, shallow channel, but will change to a meanoering, oeep
channel when the bedload becomes silt and clay leaving much of the coarse
grained deposit intact.

The predominance of coarse sands found _iat. ed with gravel deposits
identified by the TIMS gravel signatures inoicates mat mese slgna[ures are
characteristic of coarse grained quartz de.posits, and conversely, that thestrong
energy absorption in TIMS band .3is m.aximlz,ed b.ycoar__ graln_:l, qu^a_z; ,_;,,
Thus a marked decrease !n oano :Jem,ss=on (ano .correspu-u=-.Uly _==L_ an_l
in the signature at this po!nt).can be ex.p_.,ecI tot tne coarser slzeo sa=lus uH
gravels, as compared to the finer graineo sl_s.

4. THERMAL INERTIA

The thermal inertia of materials provides for striking contrasts in surface
temperatures. Thermal inertia expresses the resistance of a material to tempera-
ture change. Materials of high thermal inertia change temperature only very
slowly, lagging behind changes in adjacent materials with low thermal inertia. A
deposit of sand and gravel for example has a higher thermal inertia than a
deposit of sand. This difference is most apparent in TIMS band 3, at 9.3 microns
wavelength due to the energy absorption by Si-O molecular bonoing, whicn
maintains a low temperature at this wavelength while the sandy gravel mass
absorbs heat from solar radiation.

The combination of maximum summer heating to(]ether with early morning
cooling provides for a unique effect associated with materials of high thermal
inertia. The temperature rises high in the low thermal inertia sand exposed
over the summer months to the hot sun warming the surface. The higher thermal
inertia gravel absorbs more heat than the sand but resists temperature change,
warming more slowly, and in the predawn hours of early Fall, surface cooling
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produces a lower surface temperature over the gravel body than over the sand
deposits, when viewed in TIMS band 3. Gravel/sand deposits always show
cooler in the TIMS band 3 imagery than adjacent nongravel/sand deposits,
although warmer than the damp bottom land.

5. IMAGE PROCESSING

Imagery isprocessed on a 486 PC with 650MB hard drive and 90 MB Bernouli,
using ERDAS 7.5 software and ARCINFO. The image for this study was pepared
from the 1983 TIMS imagery. A subset including the area of concern was corrected
to uniform pixel size by multiplying raw DN's by the Cos ^4 of the angle from
Nadir. The scene was rectified and georeferenced, and a road map from the
GIS file was superimposed to assist inthe geographic location of gravel signature.
Bands 2,3 and 4 were diplayed in blue, green and red respectively. The gravel
signature was developed using the ERDAS SEED software. Using the cursor,
single pixel seeds were located which show the maximum difference between
TIMS bands 3 and 4 in the cooler areas of the scene, and these were alarmed
to the entire scene. Several seed pixeis were located due to the range in
temperatures across the gravel deposits. The resulting gravel signature is actually
a composite. Seed pixels can be located by searching along the edges of the

da_.er areas of the image. The lower DN's on gravel deposits in band3, caused
y me greater adsorption of radiation, results in a moderately dark image.

While drainage bottoms are generally dark, the signature of silt is relatively flat.
The brightest areas are ridge tops, unless gravel is present on the ridge to
reduce the brightness. The difference between DN's in bands 3 and 4 increases
with increasing brightness. An open gravel pit will have a very large increase
from band 3 to band 4.

6. DISCOVERY

During the image processing procedure associated with gravel deposit search,
blocks of imagery are processed and studied for potential gravel signature.
The area on the east side of the Forest, directly south of Fish Creek, was found
to be obscured by clouds which formed during the overflight. To the north of
this cloud cover, the processed raw image data indicated gravel signature in a
nearly uniform east-west band, that appeared to be some kind of data anomaly.
Initially, no attention was given to it. Subsequently, the image in this area was
rectified to map coordinates, and it was discovered that the band of gravel
signature actually trends north of west across the Forest for over 14 kilometers,
and crosses the Fish Creek drainage at a narrow angle near the mid point of
the signature band. The si._nature band thus runs nearly at 90 degrees to the
north-south tributaries to F=shCreek, and crosses a number of low north-south
trending ridges lying between these tributary drainages.

Several of these ridges were already accessible to our drill rig on existing road
tracks. On each of these where drilling was performed, shallow gravel deposits
were found in the area where the gravel signature crossed the ridge. Following
these successes, other less accessible ridges were accessed through brush,
or by bulldozing a temporary access through light timber. In each of these
areas investigated, gravel deposits were found in the locations indicated by the
imagery, and work continues as other ridges become accessible. Thickness of
the deposits varied from a meter up to nearly 10 meters. Overburden varied
from 0 to 2 meters. Total volume of gravel in these deposits is estimated to
exceed 500,000 cubic meters. The width of the 8 kilometer gravel run probably
averages 60 meters, providing an indication of the size of the ancient river bed.
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